
Non-linear coupling of quantum theory and classical gravity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1980 J. Phys. A: Math. Gen. 13 141

(http://iopscience.iop.org/0305-4470/13/1/015)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 20:05

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/13/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., 13 (1980) 141-148. Printed in Great Britain 

Non-linear coupling of quantum theory and classical gravity 

T W B Kibble and S Randjbar-Daemi 
Blackett Laboratory, Imperial College of Science and Technology, Prince Consort Road, 
London SW7 2BZ, UK 

Received 26 February 1979 

Abstract. We discuss the possibility that the non-linear evolution proposed earlier for a 
relativistic quantum field theory may be related to its coupling to a classical gravitational 
field. Formally, in the Schrodinger picture, we show how both the Schrodinger equation and 
Einstein’s equations (with the expectation value of the energy-momentum tensor on the 
right) can be derived from a variational principle. This yields a non-linear quantum 
evolution. Other terms can be added to the action integral to incorporate explicit non- 
linearities of the type discussed previously. We discuss briefly the possibility of giving a 
meaning to the resulting equation in a Heisenberg or interaction-like picture. 

1. Introduction 

In a previous publication (Kibble 1978) one of us has proposed a non-linear generalisa- 
tion of quantum mechanics, and exhibited a class of relativistic models of this type. It 
was suggested that the quantum non-linearity might well be related in some way to 
gravity and its associated non-linearity of space-time. To explore this idea further we 
discuss here the coupling of a quantum field theory (with or without the non-linear 
generalisation) to a classical gravitational field. 

On the question of quantising the gravitational field, the point of view we adopt is 
that, once the possibility of a non-linear quantum evolution equation is admitted, there 
is no necessity to quantise gravity. We treat the gravitational field purely classically. It 
is described by a metric tensor g,, obeying Einstein’s equations with a suitably defined 
expectation value of the quantum energy-momentum tensor on the right-hand side. 

One of the chief difficulties in extending the previous discussion to a curved 
space-time is that it was expressed in the language of the Schrodinger picture, which is 
not really appropriate and makes the preservation of covariance difficult. We shall 
therefore proceed initially in a rather formal way, considering ‘unitary’ transformations 
between one picture and another that do not, in fact, exist. 

We begin in 0 2 by considering in a given curved space-time an ordinary quantum 
field theory without quantum non-linearities (but possibly with interaction), formulated 
initially in the Heisenberg picture. We formally transform to the Schrodinger picture, 
and show (in 0 3) that on this level both the Schrodinger equation and Einstein’s 
equations, with the expectation value of T,, on the right-hand side, can be derived from 
a common variational principle. This derivation has the virtue of guaranteeing the 
validity of the consistency conditions such as the Bianchi identities. 
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As Mielnik (1974) has emphasised, this coupling to a classical gravitational field 
introduces an intrinsic non-linearity into the quantum theory. Because quantum 
superpositions are no longer preserved in time it becomes possible in principle to 
measure ‘non-quadratic’ observables, those whose probability functions are not 
expressible as quadratic functions of normalised state vectors. As he puts it, ‘either the 
gravitation is not classical or quantum mechanics is not orthodox’. Here we assume the 
latter. 

In addition to this inevitable non-linearity we can, if we wish, introduce further 
explicit nonlinearities by adding suitable terms to the action integral. This is discussed 
in 0 4. It is possible that such terms may have a role to play in making the theory better 
behaved. 

To try to give the resulting equations a meaning we then (in 0 5 )  transform back to 
something akin to an interaction picture, in which the operators carry all the time 
dependence of the usual interacting field theory while the states vary in time only 
because of explicit non-linearities. If no such extra terms are added, we recover 
precisely the Heisenberg picture. There remain severe problems in the way of a 
rigorous formulation. These are discussed briefly. 

2. Field theory in the Schrodinger picture 

We consider a four-dimensional globally hyperbolic manifold M of signature (- + + +), 
whose metric g,, for the moment we take to be given a priori. A global slicing into 
space-like surfaces is then always possible. We choose one such, a family ~ ( t )  given 
locally by equations of the form 

x F  = X ’ ” ( t ’ ,  t2, e3, t )  

where 5‘ are intrinsic coordinates, such that the normal is everywhere time-like, i.e. 
there exists a vector field nLL satisfying 

n,nF = -1 n,x: = 0 

where x,? = dx”/d[‘. Denoting the derivative with respect to t at fixed 5‘ by a dot, the 
lapse function N and shift vector N‘ are defined by 

f’” =Nn’”+N‘x: .  

What we seek is a formula which determines the ‘state of the system’ on m ( t  + dt) given 
the state on a(t). 

Consider first a quantum field theory without non-linear generalisation. For 
simplicity, we consider only a single scalar field 4 ( x ) .  The discussion could readily be 
generalised to cover other cases. Its dynamics is described by a Lagrangian density 
function 9(4, a&, g,,), for example 

(1) 2 = ( g  1 ‘ I2(-  &”a& a& - fm’4  - h h ~ $ ~ )  

where g = det g,, and h is the coupling constant. In the Heisenberg picture the field 
equations for 4 are given by variation of the operator action integral 
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The corresponding energy-momentum tensor 7’” may be defined by 

although of course this is ill-defined until a regularisation scheme has been adopted. 
For the particular choice (1) this yields 

Formally, we may pass from this manifestly covariant formalism to a Schrodinger 
picture associated with the specific slicing a ( t )  of space-time by applying a unitary 
transformation. We suppose that the two pictures coincide on the surface I+(to). Then 
the corresponding unitary operator U ( t ,  to) should satisfy the equation 

a 
at 

i -U(t, to) = H ( t ) U ( t ,  to) 

where the surface-dependent Hamiltonian is given by 

H ( t )  = -1 da;T:i”. 
U ( ? )  

1/2 3 Here da, = n,y d 8, with y = det yrs, where yrs is the metric induced on a ( t ) ,  

(4) 

, U  Y r s  = g @ J , r X , s .  

It must be emphasised that (4) has at best a formal significance. In general there is no 
unitary operator satisfying this equation; and indeed H ( t )  may not exist. Nonetheless 
the derivation has heuristic value, and we shall pursue it further. Later we return to the 
question of how to give the resulting formalism a precise mathematical meaning. 

The canonical conjugate to q5 is defined as usual by 

T = a 2 / a &  (6 )  

Explicitly, for the model described by (l), it is 

7~ = N-1y1/2(c$ - Nr4,r) ,  

The field equations in Hamiltonian form, including the relation (6) between 4 and T, 
can be derived from variation of the action integral 

Of course, W,, reduces to W, when T is chosen to satisfy 

s W,,/ST = 0 (8) 

whose solution is (6 ) .  It follows that 

sw, -- w,, 
~g,u(x)  & A x )  
-- 

where the functional derivative on the right is at constant 4 and T, but evaluated for 
values satisfying (8). Since the first term in (7) is independent of g,, we therefore 
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obtain, using (3), 

This relation may be verified by explicit computation. It will be useful later. 

we obtain a transformed state vector l$(t))  = U(t,  
equation 

If we make the formal unitary transformation defined by the solution U(t,  to) of (4), 
which satisfies Schrodinger's 

ild(t)) = H ( t M t ) ) .  (10) 

Correspondingly, the transformed operators U(t, to)q5 ( x )  U-'(t, to) and 
U(t,  t 0 ) r ( x )  U-'(& to)  become independent of t, functions of the intrinsic coordinates 8' 
only. 

Note that the transformation to the Schrodinger picture depends not only on the 
slicing of space-time but also on the parametrisation of the slices. A time-dependent 
change of intrinsic coordinates leads to a different Schrodinger picture. 

The equation (10) can also be written in a local form which shows how the state 
changes under small displacements of the space-like hypersurface a(t). Writing 

we may express (1 0) as 

3. The action integral 

The equation (10) can be derived in various ways from a variational principle. In a 
previous publication (Kibble 1979) one of us showed how quantum dynamics could be 
expressed as a Hamiltonian flow on the space Z of instantaneous pure states, which is 
essentially a projective Hilbert space, the set of rays in (a dense subspace of) the Hilbert 
space 2'. However the corresponding symplectic two-form U ,  though closed, is not 
exact. There exists no analogue of the classical canonical one-form p t  dq', and hence no 
possibility of a Lagrangian formalism. One can, of course, derive the Schrodinger 
equation from a Lagrangian using not Z but X. However, in that form, one cannot 
introduce any non-linearity, such as coupling to a classical gravitational field, without 
violating the invariance of the equations of motion under the transformation 14) + h I+) 
of the state vector. 

One can escape this dilemma by using neither Z nor X, but rather the unit sphere 21 
in 2'. On 2'' a suitable canonical one-form may be defined, namely 

0 = Im (d414). 

However, it does not induce a symplectic structure on 2' because w = -d0 is neces- 
sarily degenerate in the sense that it vanishes on the vector field which generates the 
phase transformation 14) + e'"I4). 
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The restriction to 2 1  can be imposed by using a Lagrange multiplier. Thus we take 
the action integral to be 

w, = j dt  ~ ~ ~ ~ ~ l + ~ - ~ + l ~ l + ~ + ~ ~ ~ + l + ~ - ~ ~ l .  (13) 

Variation of the Lagrange multiplier (Y yields the constraint 

(+I+) = 1 (14) 

il (G. ( t ) )  = H(t) l  +( t ) )  - 0)  I + ([I). (15) 

while variation of I+) yields the Schrodinger equation 

The degeneracy is exhibited in the indeterminancy of the Lagrange multiplier a. 
Physically, of course, (15) is equivalent to (lo), because an overall phase in the state 
vector is unobservable. In practice, it may be convenient to remove the arbitrariness by 
a suitable convention. This amounts to a choice of the zero point of H. 

Next, we wish to show that if a purely gravitational action integral 

W,=- J d4x jg11’2R 
161rk 

is added to (13), Einstein’s equations result. Of course, 

where G’I“ is the Einstein tensor. Moreover the expectation value of (9) is 

Thus from the variational principle, 

S (  wg+ W,) = 0 (18) 

we obtain Einstein’s equations, 

G’I“ = -8Irk(+lT’I”l+) (19) 

as well as the Schrodinger equation (15) and the normalisation condition (14). 
Bianchi’s identities require 

which are an expression of the general coordinate invariance of the theory. One of the 
chief virtues of the derivation from an action principle is that these conditions are 
guaranteed. They are non-trivial because the states are, of course, time-dependent. 
However, they can also be verified by direct computation (Kramer 1976). 

4. Incorporation of explicit non-linearities 

Because the classical gravitational field obtained by solving (19) reacts back on the 
quantum state, via (19, the quantum evolution is intrinsically nonlinear. 
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In addition, if we wish, we can incorporate extra explicit nonlinearities by adding 
terms to the action integral. Such terms, if suitably chosen, may serve to make the 
theory better behaved. For example, we could add a term like 

(21 )  

to generate nonlinearities of the type considered previously (Kibble 1978). 
Here, however, we are more interested in nonlinearities that involve gravity in an 

essential way. Specifically, we require that the nonlinearity should disappear from the 
Schrodinger equation when the space-time is flat. One way to achieve that is by 
including in (21 )  a factor of the scalar curvature R. More generally, we may take our 
extra contribution to the action integral to be of the form 

where F and f are suitably chosen functions, and 

Note that higher powers of R in (22 )  can be excluded by the requirement that the field 
equations be no more than second-order. For the same reason we cannot introduce 
terms involving, say, R Fv(a,+a,+). 

Adding the term (22)  to the action integral changes both the Schrodinger equation 
(15) and Einstein’s equations (19) .  The former becomes 

and 

(24)  

where the prime denotes a derivative. Correspondingly, the Einstein equations (19 )  
become 

Notice that the effect of one term on the right-hand side of (25) can be thought of as a 
state-dependent change in the gravitational constant. The equation can be written in 
the alternative form 

This is somewhat reminiscent of Brans-Dicke theory (and also of asymptotic freedom). 
As in the Brans-Dicke case it would be possible to recover a theory with fixed 
gravitational constant by making a suitable scale transformation (Dicke 1962). 
However, in our case, the compensating terms involving derivatives of F would be 
extremely complicated. 
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Because the term (22) added to the action integral is the integral of a scalar density, 
the conditions (20) are preserved. Now, of course, it is the right-hand side of (25)--or 
equivalently of (26)-which has vanishing covariant divergence. 

Specific solutions of the equations (23) and (26) will be examined in a future paper. 

5. Interpretation 

It is almost certain that the Schrodinger equation (23) cannot be given a rigorous 
mathematical meaning as it stands. In general, a covariant approach seems more likely 
to succeed than one based on the Schrodinger picture. 

In the theory without explicit nonlinearities, we can return to the Heisenberg 
picture, in which the field operator 4 ( x )  obeys the field equations 

(27) -lgl-1/2a,(lgl 1/2 v a v 4 )  + mZ4 +;hd3 = 0. 

Einstein's equations retain the form (19), but of course the states are now time- 
independent. 

When non-linearities of the type discussed in 8 4 are included, it seems very hard to 
recover a Heisenberg picture. What we can do, however, is to recover something like an 
interaction picture. More precisely, we may reverse the transformation effected by 
U ( t ,  to) discussed in 0 2. This throws all the time dependence related to the ordinary 
linear terms in the Schrodinger equation back onto the operators, so that they obey the 
equation (27). At  the same time the state vector has a time dependence due solely to the 
explicit non-linearity, namely 

il&(t)) = H? (t)l@(t)) --(y ( W ( t ) ) .  (28) 

It is also possible to write this equation in a local form like (12), namely 

(29) 
. s  
1sXpJ 4)  = n,y "2RF'((f(4 N 9 ) f  ( 4 )  I $). 

However, because the right-hand side is proportional to n, (corresponding to a 
diagonal contribution to the energy-momentum tensor), it can also be written in a form 
like that of the Tomonoga equation, namely 

Several problems need to be solved to give these equations a meaning. First, in H;', 
and on the right-hand side of Einstein's equations (19) or (25), there are expectation 
values of quadratic (or higher) functions of the field operators. To give these a precise 
significance we have to adopt some kind of regularisation scheme. Second, in solving 
the field equations (27) we of course encounter the usual ultraviolet divergences so that 
we need to solve the highly non-trivial problem of renormalisation in the presence of a 
gravitational background. Finally, it is far from certain that the equation (28) for the 
remaining time dependence of the state vectors would have solutions in the strict sense. 
It may be better to think of 4(t) not as a state vector in a Hilbert-space representation 
but rather as a state on the algebra of field operators: if it is possible to consider the 
observables at a fixed time as forming an algebra, then 4 ( t )  may properly be thought of 
as a linear functional on that algebra. 
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